95 research outputs found

    Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antigen-antibody interactions are key events in immune system, which provide important clues to the immune processes and responses. In Antigen-antibody interactions, the specific sites on the antigens that are directly bound by the B-cell produced antibodies are well known as B-cell epitopes. The identification of epitopes is a hot topic in bioinformatics because of their potential use in the epitope-based drug design. Although most B-cell epitopes are discontinuous (or conformational), insufficient effort has been put into the conformational epitope prediction, and the performance of existing methods is far from satisfaction.</p> <p>Results</p> <p>In order to develop the high-accuracy model, we focus on some possible aspects concerning the prediction performance, including the impact of interior residues, different contributions of adjacent residues, and the imbalanced data which contain much more non-epitope residues than epitope residues. In order to address above issues, we take following strategies. Firstly, a concept of 'thick surface patch' instead of 'surface patch' is introduced to describe the local spatial context of each surface residue, which considers the impact of interior residue. The comparison between the thick surface patch and the surface patch shows that interior residues contribute to the recognition of epitopes. Secondly, statistical significance of the distance distribution difference between non-epitope patches and epitope patches is observed, thus an adjacent residue distance feature is presented, which reflects the unequal contributions of adjacent residues to the location of binding sites. Thirdly, a bootstrapping and voting procedure is adopted to deal with the imbalanced dataset. Based on the above ideas, we propose a new method to identify the B-cell conformational epitopes from 3D structures by combining conventional features and the proposed feature, and the random forest (RF) algorithm is used as the classification engine. The experiments show that our method can predict conformational B-cell epitopes with high accuracy. Evaluated by leave-one-out cross validation (LOOCV), our method achieves the mean AUC value of 0.633 for the benchmark bound dataset, and the mean AUC value of 0.654 for the benchmark unbound dataset. When compared with the state-of-the-art prediction models in the independent test, our method demonstrates comparable or better performance.</p> <p>Conclusions</p> <p>Our method is demonstrated to be effective for the prediction of conformational epitopes. Based on the study, we develop a tool to predict the conformational epitopes from 3D structures, available at <url>http://code.google.com/p/my-project-bpredictor/downloads/list</url>.</p

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    Dynamics of Molecular Evolution and Phylogeography of Barley yellow dwarf virus-PAV

    Get PDF
    Barley yellow dwarf virus (BYDV) species PAV occurs frequently in irrigated wheat fields worldwide and can be efficiently transmitted by aphids. Isolates of BYDV-PAV from different countries show great divergence both in genomic sequences and pathogenicity. Despite its economical importance, the genetic structure of natural BYDV-PAV populations, as well as of the mechanisms maintaining its high diversity, remain poorly explored. In this study, we investigate the dynamics of BYDV-PAV genome evolution utilizing time-structured data sets of complete genomic sequences from 58 isolates from different hosts obtained worldwide. First, we observed that BYDV-PAV exhibits a high frequency of homologous recombination. Second, our analysis revealed that BYDV-PAV genome evolves under purifying selection and at a substitution rate similar to other RNA viruses (3.158×10−4 nucleotide substitutions/site/year). Phylogeography analyses show that the diversification of BYDV-PAV can be explained by local geographic adaptation as well as by host-driven adaptation. These results increase our understanding of the diversity, molecular evolutionary characteristics and epidemiological properties of an economically important plant RNA virus

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl

    Prime-boost immunization of rabbits with HIV-1 gp120 elicits potent neutralization activity against a primary viral isolate

    Get PDF
    <div><p>Development of a vaccine for HIV-1 requires a detailed understanding of the neutralizing antibody responses that can be experimentally elicited to difficult-to-neutralize primary isolates. Rabbits were immunized with the gp120 subunit of HIV-1 JR-CSF envelope (Env) using a DNA-prime protein-boost regimen. We analyzed five sera that showed potent autologous neutralizing activity (IC50s at ∼10<sup>3</sup> to 10<sup>4</sup> serum dilution) against pseudoviruses containing Env from the primary isolate JR-CSF but not from the related isolate JR-FL. Pseudoviruses were created by exchanging each variable and constant domain of JR-CSF gp120 with that of JR-FL or with mutations in putative N-glycosylation sites. The sera contained different neutralizing activities dependent on C3 and V5, C3 and V4, or V4 regions located on the glycan-rich outer domain of gp120. All sera showed enhanced neutralizing activity toward an Env variant that lacked a glycosylation site in V4. The JR-CSF gp120 epitopes recognized by the sera are generally distinct from those of several well characterized mAbs (targeting conserved sites on Env) or other type-specific responses (targeting V1, V2, or V3 variable regions). The activity of one serum requires specific glycans that are also important for 2G12 neutralization and this serum blocked the binding of 2G12 to gp120. Our findings show that different fine specificities can achieve potent neutralization of HIV-1, yet this strong activity does not result in improved breadth.</p> </div

    Varieties of Living Things: Life at the Intersection of Lineage and Metabolism

    Full text link
    corecore